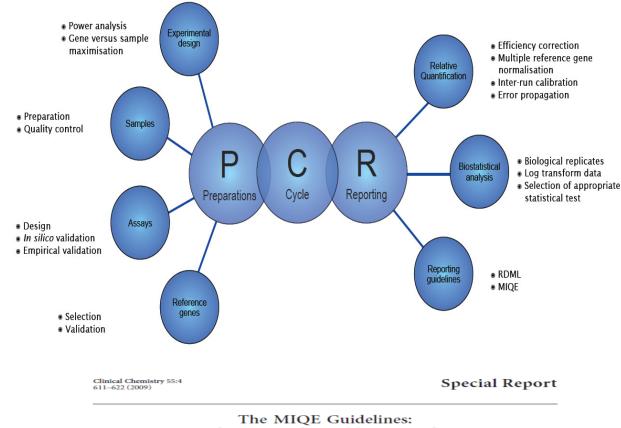




# **Quantitative Real-Time PCR**

**Application Workshop** 

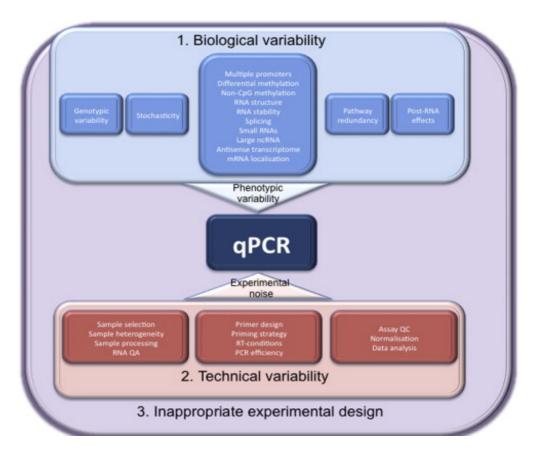
20<sup>th</sup> February, 2020


Dr Joanna Brzeszczyńska

University of the West of Scotland (UWS) Paisley Scotland United Kingdom



# Quantitative real time pcr critical factors contributing to success


MIQE guidelines: minimum set of information that researchers should provide for their qPCR data



Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin,<sup>1\*</sup> Vladimir Benes,<sup>7</sup> Jeremy A. Garson,<sup>3,4</sup> Jan Hellemans,<sup>5</sup> Jim Huggett,<sup>6</sup> Mikael Kubista,<sup>7,8</sup> Reinhold Mueller,<sup>9</sup> Tania Nolan,<sup>10</sup> Michael W. Pfaffl,<sup>11</sup> Gregory L. Shipley,<sup>12</sup> Jo Vandesompele,<sup>5</sup> and Carl T. Wittwer<sup>13,14</sup>





Clinical Chemistry 55:4 611-622 (2009)

Special Report

#### The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin,<sup>1\*</sup> Vladimir Benes,<sup>2</sup> Jeremy A. Garson,<sup>3,4</sup> Jan Hellemans,<sup>5</sup> Jim Huggett,<sup>6</sup> Mikael Kubista,<sup>7,8</sup> Reinhold Mueller,<sup>9</sup> Tania Nolan,<sup>10</sup> Michael W. Pfaffl,<sup>11</sup> Gregory L. Shipley,<sup>12</sup> Jo Vandesompele,<sup>5</sup> and Carl T. Wittwer<sup>13,14</sup>

#### Table 1. MIQE checklist for authors, reviewers, and editors.<sup>a</sup>

| Item to check                                                                     | Importance | Item to check                                                            | Importance |
|-----------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|------------|
| Experimental design                                                               |            | qPCR oligonucleotides                                                    |            |
| Definition of experimental and control groups                                     | E          | Primer sequences                                                         | E          |
| Number within each group                                                          | E          | RTPrimerDB identification number                                         | D          |
| Assay carried out by the core or investigator's laboratory?                       | D          | Probe sequences                                                          | Dd         |
| Acknowledgment of authors' contributions                                          | D          | Location and identity of any modifications                               | E          |
| Sample                                                                            |            | Manufacturer of oligonucleotides                                         | D          |
| Description                                                                       | E          | Purification method                                                      | D          |
| Volume/mass of sample processed                                                   | D          | qPCR protocol                                                            |            |
| Microdissection or macrodissection                                                | E          | Complete reaction conditions                                             | E          |
| Processing procedure                                                              | E          | Reaction volume and amount of cDNA/DNA                                   | E          |
| If frozen, how and how quickly?                                                   | E          | Primer, (probe), Mg <sup>2+</sup> , and dNTP concentrations              | E          |
| If fixed, with what and how quickly?                                              | E          | Polymerase identity and concentration                                    | E          |
| Sample storage conditions and duration (especially for FFPE <sup>b</sup> samples) | E          | Buffer/kit identity and manufacturer                                     | E          |
| Nucleic acid extraction                                                           |            | Exact chemical composition of the buffer                                 | D          |
| Procedure and/or instrumentation                                                  | E          | Additives (SYBR Green I, DMSO, and so forth)                             | E          |
| Name of kit and details of any modifications                                      | E          | Manufacturer of plates/tubes and catalog number                          | D          |
| Source of additional reagents used                                                | D          | Complete thermocycling parameters                                        | E          |
| Details of DNase or RNase treatment                                               | E          | Reaction setup (manual/robotic)                                          | D          |
| Contamination assessment (DNA or RNA)                                             | E          | Manufacturer of gPCR instrument                                          | E          |
| Nucleic acid guantification                                                       | E          | qPCR validation                                                          | 2          |
| Instrument and method                                                             | E          | Evidence of optimization (from gradients)                                | D          |
| Purity (A <sub>260</sub> /A <sub>280</sub> )                                      | D          | Specificity (gel, sequence, melt, or digest)                             | F          |
| Yield                                                                             | D          | For SYBR Green I, Ca of the NTC                                          | F          |
|                                                                                   | E          |                                                                          | E          |
| RNA integrity: method/instrument                                                  | F          | Calibration curves with slope and y intercept                            | F          |
| RIN/RQI or $C_q$ of 3' and 5' transcripts                                         | D          | PCR efficiency calculated from slope                                     | E<br>D     |
| Electrophoresis traces                                                            | -          | Cls for PCR efficiency or SE                                             | 5          |
| Inhibition testing (C <sub>q</sub> dilutions, spike, or other)                    | E          | r <sup>2</sup> of calibration curve                                      | E          |
| Reverse transcription                                                             |            | Linear dynamic range                                                     | E          |
| Complete reaction conditions                                                      | E          | C <sub>q</sub> variation at LOD                                          | E          |
| Amount of RNA and reaction volume                                                 | E          | Cls throughout range                                                     | D          |
| Priming oligonucleotide (if using GSP) and concentration                          | E          | Evidence for LOD                                                         | E          |
| Reverse transcriptase and concentration                                           | E          | If multiplex, efficiency and LOD of each assay                           | E          |
| Temperature and time                                                              | E          | Data analysis                                                            |            |
| Manufacturer of reagents and catalogue numbers                                    | D          | qPCR analysis program (source, version)                                  | E          |
| C <sub>q</sub> s with and without reverse transcription                           | Dc         | Method of Cq determination                                               | E          |
| Storage conditions of cDNA                                                        | D          | Outlier identification and disposition                                   | E          |
| qPCR target information                                                           |            | Results for NTCs                                                         | E          |
| Gene symbol                                                                       | E          | Justification of number and choice of reference genes                    | E          |
| Sequence accession number                                                         | E          | Description of normalization method                                      | E          |
| Location of amplicon                                                              | D          | Number and concordance of biological replicates                          | D          |
| Amplicon length                                                                   | E          | Number and stage (reverse transcription or qPCR) of technical replicates | E          |
| In silico specificity screen (BLAST, and so on)                                   | E          | Repeatability (intraassay variation)                                     | E          |
| Pseudogenes, retropseudogenes, or other homologs?                                 | D          | Reproducibility (interassay variation, CV)                               | D          |
| Sequence alignment                                                                | D          | Power analysis                                                           | D          |
| Secondary structure analysis of amplicon                                          | D          | Statistical methods for results significance                             | E          |
| Location of each primer by exon or intron (if applicable)                         | E          | Software (source, version)                                               | E          |
|                                                                                   |            |                                                                          |            |

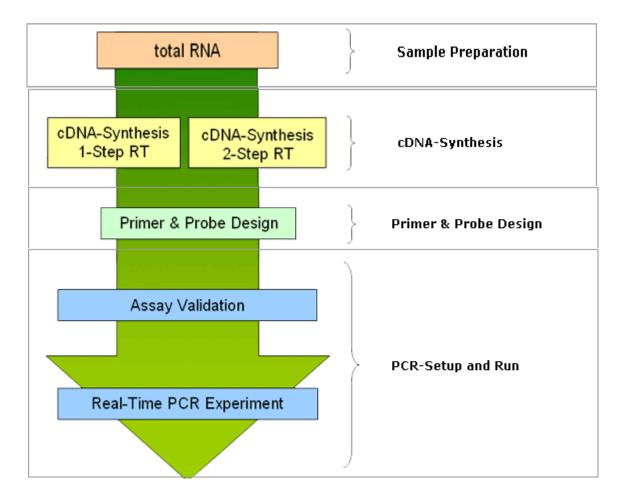
<sup>a</sup> All essential information (E) must be submitted with the manuscript. Desirable information (D) should be submitted if available. If primers are from RTPrimerDB, information on qPCR target, oligonucleotides, protocols, and validation is available from that source.

<sup>b</sup> FFPE, formalin-fixed, paraffin-embedded; RIN, RNA integrity number; RQI, RNA quality indicator; GSP, gene-specific priming; dNTP, deoxynucleoside triphosphate.
<sup>c</sup> Assessing the absence of DNA with a no-reverse transcription assay is essential when first extracting RNA. Once the sample has been validated as DNA free, inclusion of a no-reverse transcription control is desirable but no longer essential.

<sup>d</sup> Disclosure of the probe sequence is highly desirable and strongly encouraged; however, because not all vendors of commercial predesigned assays provide this information, it cannot be an essential requirement. Use of such assays is discouraged.



### **MIQE key issues:**


**1.** Detailed sample information: sample selection, acquisition, handling and storage, processing procedures.

**2.** (RT)-qPCR quality control metrics: purity and integrity.

**3.** (RT)-qPCR efficiency: amplification efficiencies of target and reference genes under treatment and control conditions.

**4.** Justification for normalisation procedure: use more than 1 reference gene (3 is recommended).

**5.** Importance of controls: NTC, (-)ve RT, (+)ve control.





# (RT)-qPCR quality control metrics

# **RNA** validation:

# Nanodrop: Purity (A260/A280 & A260/A230 ) Bioanalizer: Integrity (RIN)



# Measuring the Quantity of RNA using the Nanodrop.





RNA has its absorption maximum at 260 nm and the ratio of the absorbance at 260 and 280 nm is used to assess the RNA purity of an RNA preparation.

Pure RNA has an A260/A280 of 2.1.

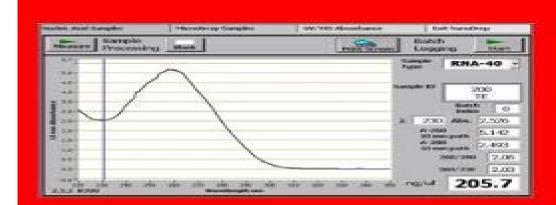
You will see in many protocols that a value of 1.8-2.0 indicates that the RNA is pure.

It is important that not only the OD A260/A280 ratio should be very close to 2.0, but that in addition, also the OD A260/A230 ratio should be very close to 2.0.

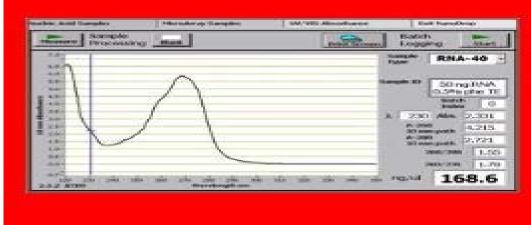


### The Good

Both the OD A260/A280 as the OD A260/A230 ratio are 2.0 or more.


Perfect, you can do with this RNA whatever you like, everything should work.

#### The Bad


The OD A260/A280 ratio is over 2.0 but the OD A260/A230 ratio is below 1.0. Be careful! This indicates that the sample contains impurities. Some downstream procedures may work perfectly while others may give problems.

### The Ugly

Don't even think of using this RNA! Just perform an extra purification step.

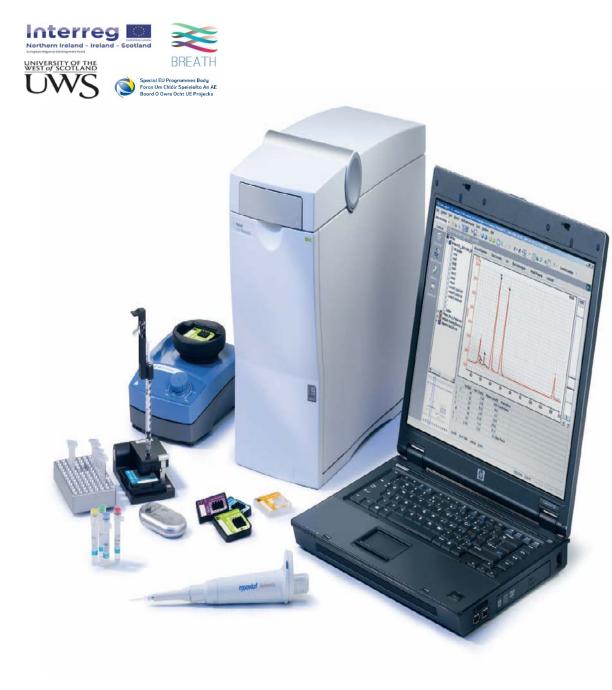








# Measuring the Integrity of RNA using the Bioanalyzer

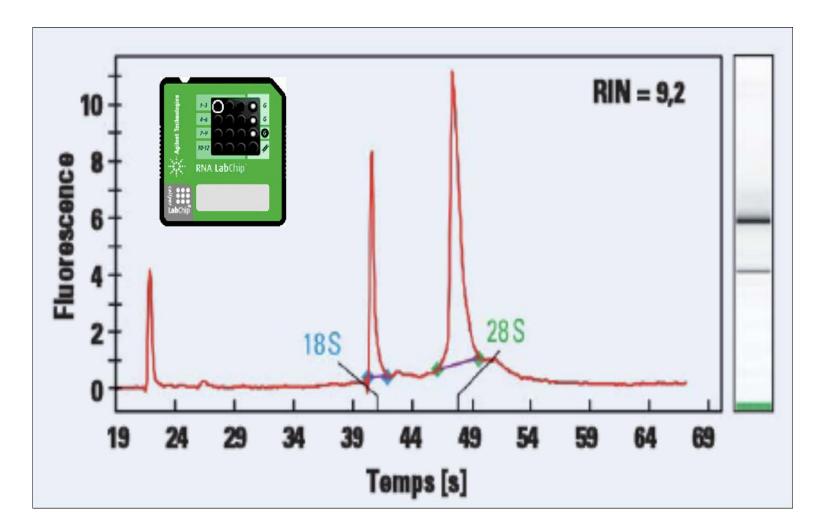

# RNA validation:

RNA Integrity Number (RIN) –Standardization of RNA Quality Control

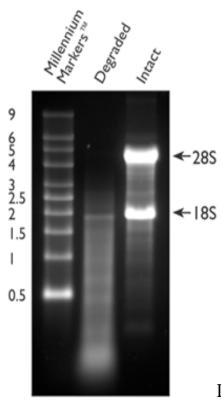


# **Bioanalyzer Applications:**

Check RNA integrity for downstream applications Genomic and ribosomal contamination of mRNA samples Small RNA (6-150 nt) analysis of miRNA, siRNA, and oligonucleotides PCR product purity and size Protein induction in cell lysates Protein purification








The RNA Integrity Number (RIN), was developed to remove individual interpretation in RNA quality control.







Intact vs. Degraded RNA. Two µg of degraded total RNA and intact total

RNA were run beside Ambion's RNA Millennium Markers<sup>TM</sup> on a 1.5% denaturing agarose gel. The 18S and 28S ribosomal RNA bands are clearly visible in the intact RNA sample. The degraded RNA appears as a lower molecular weight smear.



# **RNA Storage**

- Storing the purified RNA
- Immediately after removing the 1µL aliquot from the purified RNA product, add 1u/µL Superase-IN (Ambion) RNAse inhibitor to each tube of purified RNA.
- Vortex to mix.
- Wrap the sealed tube with Parafilm and store at -80° C for future use.



# **Conclusions:**

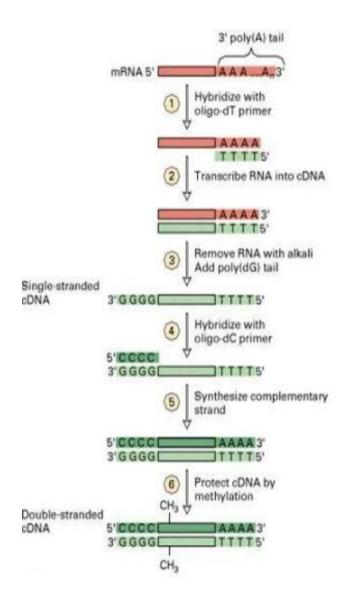
- Should be free of protein (absorbance 260nm/280nm > 1.8)
- Should be intact (28S/18S ~2:1)
- High RIN (use Agilent Bioanalyzer)
- Should be free of DNA (treat with DNAse)
- Should be free of PCR inhibitors
  - Purification methods
  - Clean-up methods

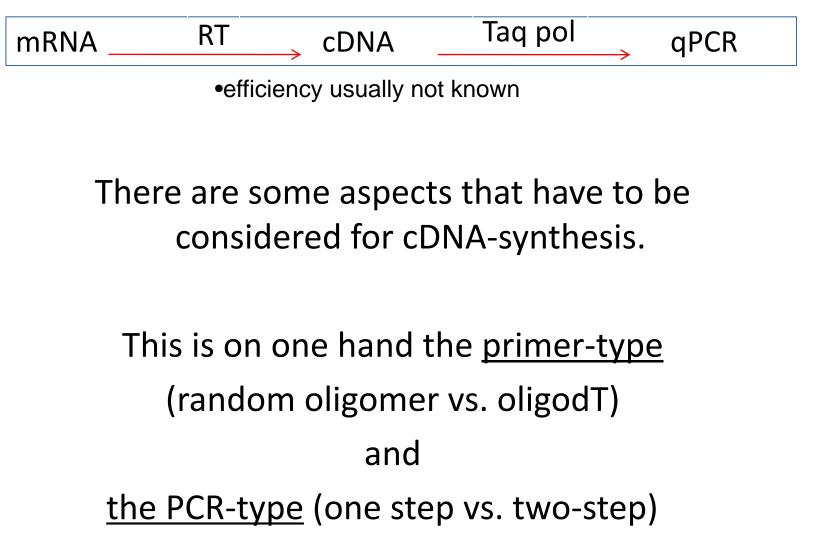


# **cDNA Synthesis**

**Obtain tissue** 

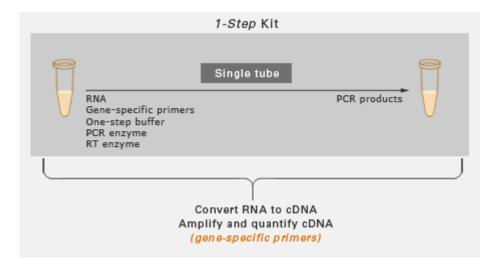
**Extract RNA** 


Copy into cDNA (reverse transcriptase)


**Real-time PCR** 

Analyze results





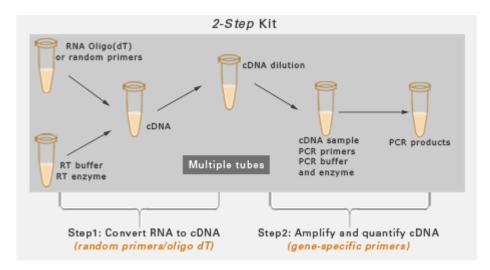







### PCR-type (one step vs. two-step)).




### Choose the 1-Step Kit, if you...

•Do not store cDNA

Dispose samples after one or few usesHave many samples with one or few targets

### •Use liquid handling robotics

Choose to reduce chance of cross contamination during procedure
Need to reduce time to results



### Choose the 2-Step Kit, if you...

Need to store cDNA
Have limited sample quantity
Have many targets per sample
Require maximum performance of both RT and PCR steps



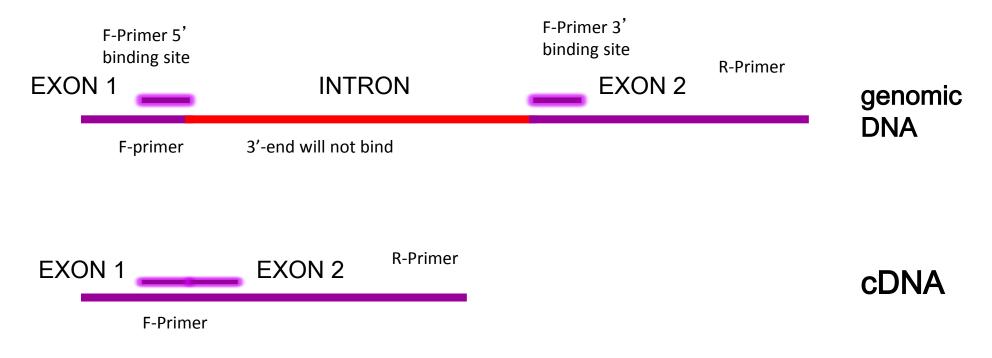
**Obtain tissue** 

**Extract RNA** 

Copy into cDNA (reverse transcriptase)

# **Real-time PCR**

Analyze results




# Importance of primers in qPCR

- Specific
- High efficiency
- No primer-dimers
- Ideally should not give a genomic DNA signal
  - cross exon/exon boundary



Primer will not bind to genomic DNA because the 3' end is not complementary to the Intron



Primer will bind to the cDNA because the primer is complementary to the Exon-Exon boundary after the intron is cleaved out



# General guidelines for primer design

- 18-30 nucleotides
- G/C content: 40-60%
- Avoid complementary sequences of primers (especially at the 3' end)
- Avoid mismatches at the 3' end
- Avoid 3 or more G or C at the 3' end
- Avoid a 3' end T



# **General guidelines for primer design**

<u>PerlPrimer</u> - Open-source, downloadable PCR primer design software

<u>Primer3</u> - Open-source PCR primer design software. Offers both downloadable and web versions

<u>Primer-BLAST</u> - Web software for designing primers that combines features of both Primer3 and BLAST.



### matches are found for GenBank Accession ()"NM\_022114,,

- Gene Descriptions: GenBank Accession <u>NM\_022114</u> NCBI Protein Accession <u>NP\_071397</u> Species <u>Human</u> Coding DNA Length 3831
- **Gene Description** PR domain containing 16; transcription factor MEL1 [Homo sapiens].

**Primer Pair 1** (Click here for cDNA and amplicon sequence): PrimerBank ID 11545831a1

- Amplicon Size 191
- Sequence (5' -> 3') Length Tm Location
- Forward Primer AAGGCGGTCTGTTAGCTTTGG 21 62.6 3539-3559
- Reverse Primer GTCTTCGGAAAGGGACAGCA 20 61.8 3729-3710



# **EFFECTS OF EFFICIENCY**



| AMOUNT OF I | DNA                  |
|-------------|----------------------|
|             | 1                    |
|             | 2                    |
|             | 4                    |
|             | 8                    |
|             | 16                   |
|             | 32                   |
|             | 64                   |
|             | <b>12</b> 8          |
|             | <b>256</b>           |
|             | 512                  |
|             | 1,024                |
|             | 2,048                |
|             | 4,096                |
|             | 8,1 <mark>9</mark> 2 |
|             | 16,384               |
|             | <b>32,76</b> 8       |
|             | 65,536               |
|             | 131,072              |
|             | 262,144              |
|             | 524,288              |
| 1,          | ,048,576             |
| 2           | ,097,152             |
| 4           | ,1 <b>94,30</b> 4 Д  |
| 8           | ,388,608             |
| 16          | , <b>777,216</b>     |
| 33          | ,554,432             |
| 67          | ,108,864             |
| 134,        | ,217,728             |
| 268,        | 435,456              |
| 536,        | ,870,912             |
| 1,073,      | 741,824              |
| 1,400,      | 000,000              |
| 1.500.      | 000.000              |

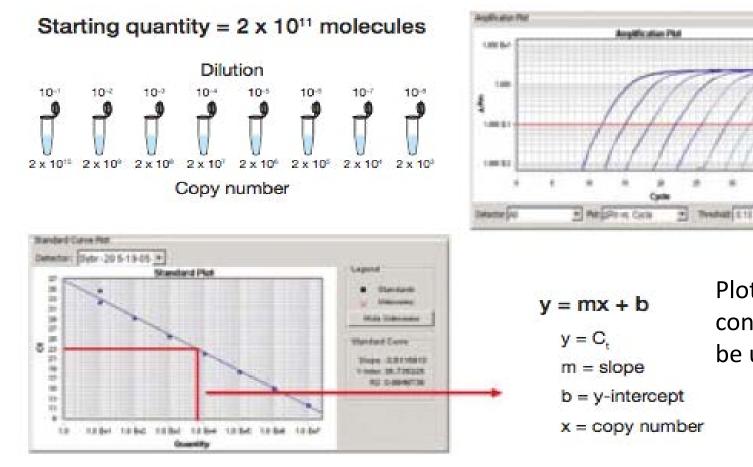
## The amount of DNA doubles after each cycle

### Assuming 100% efficient PCR reactions

After n cycles there will be 2<sup>n</sup> times as much DNA



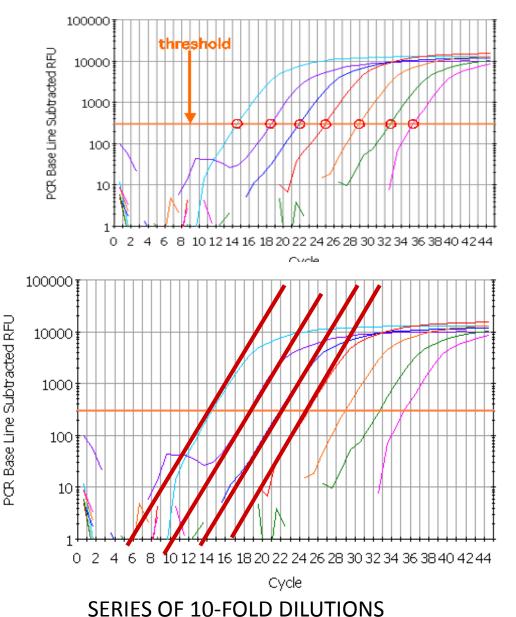
| CYCLE | AMOUNT OF DNA   | AMOUNT OF DNA  | AMOUNT OF DNA  |
|-------|-----------------|----------------|----------------|
|       | 100% EFFICIENCY | 90% EFFICIENCY | 80% EFFICIENCY |
| 0     | 1               | 1              | 1              |
| 1     | 2               | 2              | 2              |
| 2     | 4               | 4              | 3              |
| 3     | 8               | 7              | 6              |
| 4     | 16              | 13             | 10             |
| 5     | 32              | 25             | 19             |
| 6     | 64              | 47             | 34             |
| 7     | 128             | 89             | 61             |
| 8     | 256             | 170            | 110            |
| 9     | 512             | 323            | 198            |
| 10    | 1 024           | 613            | 357            |
| 11    | 2 048           | 1 165          | 643            |
| 12    | 4 096           | 2 213          | 1 157          |
| 13    | 8 192           | 4 205          | 2 082          |
| 14    | 16 384          | 7 990          | 3 748          |
| 15    | 32 768          | 15 181         | 6 747          |
| 16    | 65 536          | 28 844         | 12 144         |
| 17    | 131 072         | 54 804         | 21 859         |
| 18    | 262 144         | 104 127        | 39 346         |
| 19    | 524 288         | 197 842        | 70 824         |
| 20    | 1 048 576       | 375 900        | 127 482        |
| 21    | 2 097 152       | 714 209        | 229 468        |
| 22    | 4 194 304       | 1 356 998      | 413 043        |
| 23    | 8 388 608       | 2 578 296      | 743 477        |


AFTER 1 CYCLE 100%= 2.00x 90% = 1.90x 80% = 1.80x 70% = 1.70x

Much different values depending on the efficiency



# Absolute quantification


A standard curve is generated using a single template species that is diluted over several orders of magnitude.  $C_t(C_p)$  vs concentration is plotted.



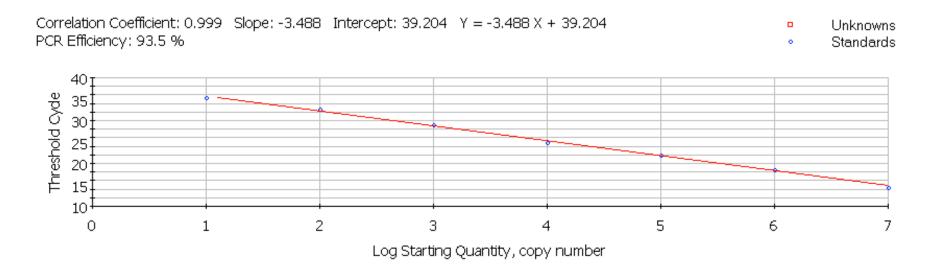

Plot the Ct values for the dilutions vs concentration, the slope of the line can be used to calculate the PCR efficiency

```
Author: Dr Joanna Brzeszczyńska (UWS)
```








Plot the Ct values for the dilutions vs concentration, the slope of the line can be used to calculate the PCR efficiency

### Same slope = Same efficiency



The ideal slope is -3.32, which correlates to an amplification efficiency of 100% correlation coefficient R2 =0.999.

Slopes in the range of -3.60 to -3.10 are generally considered acceptable for realtime PCR. These slope values correlate to amplification efficiencies between 90% and 110%



Note: A 100% efficient reaction will yield a 10-fold increase in PCR amplicon every 3.32 cycles during the exponential phase of amplification (log2 10= 3.3219).



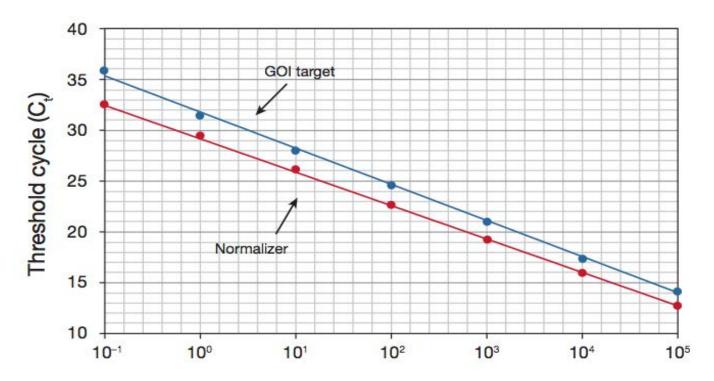
# **PCR Amplification Efficiency**

| GAPDH        | RNA (ng/rxn) | log RNA     | 1            | 2            | 3               | AVG    | SD    | CV     |             |      |           |                      |                         |                  |              |                           |            |
|--------------|--------------|-------------|--------------|--------------|-----------------|--------|-------|--------|-------------|------|-----------|----------------------|-------------------------|------------------|--------------|---------------------------|------------|
| std curve    | 50           | 1.699       | 16.587       | 16.789       | 16.712          | 16.696 | 0.102 | 0.61%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 10           | 1.000       | 19.344       | 19.208       | 18.977          | 19.176 | 0.185 | 0.97%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 2            | 0.301       | 21.672       | 21.564       | 21.125          | 21.454 | 0.290 | 1.35%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.4          | -0.398      | 24.524       | 24.093       | 23.472          | 24.030 | 0.529 | 2.20%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.08         | -1.097      | 26.746       | 27.020       | 26.453          | 26.740 | 0.284 | 1.06%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.016        | -1.796      | 29.693       | 29.916       | 29.829          | 29.813 | 0.112 | 0.38%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | -RT          | -           | 36.540       | 36.367       | 37.249          | 36.719 | 0.467 | 1.27%  | <b>40</b> T |      |           |                      |                         |                  |              |                           |            |
| HT 29 parent | 5            | 0.699       | 20.406       | 20.498       | 20.126          | 20.343 | 0.194 | 0.95%  |             |      |           |                      |                         |                  |              |                           |            |
| HT 29 parent | 0.5          | -0.301      | 23.745       | 23.729       | 23.363          | 23.612 | 0.216 | 0.92%  | 1           |      |           |                      |                         |                  |              |                           |            |
| HT 29 parent | -RT          | -           | 36.422       | 35.035       | Undetermined    | 35.728 | 0.980 | 2.74%  | 20          |      |           |                      |                         |                  |              | <ul> <li>GAPDH</li> </ul> |            |
| HT 29 x8     | 5            | 0.699       | 20.523       | 20.389       | 20.026          | 20.313 | 0.258 | 1.27%  | 35 -        |      |           |                      |                         |                  |              | Gene of                   | i Interest |
| HT 29 x8     | 0.5          | -0.301      | 23.667       | 23.509       | 23.176          | 23.451 | 0.251 | 1.07%  | -           |      |           |                      |                         |                  |              |                           |            |
| HT 29 x8     | -RT          | 1           | Undetermined | 37.032       | 37.136          | 37.084 | 0.074 | 0.20%  | -           |      |           |                      |                         |                  |              |                           |            |
| no temp      | 0            | _           | 34.101       | 34.199       | 36.068          | 34,790 | 1.108 | 3.19%  | 30 -        |      |           |                      |                         |                  |              |                           |            |
| no tomp      |              |             | 01.101       | 01.100       |                 | 01.100 | 1.100 | 0.1070 |             |      |           |                      |                         |                  | y = -4.2143  | ( + 28.331                |            |
|              |              | slope       | -3.714       | 22.805       | intercept       |        |       |        | 1           |      |           |                      |                         | -                | $R^2 = 0.$   | 0007                      |            |
|              |              | std error m | 0.094        | 0.112        | std error b     |        |       |        |             |      |           |                      |                         |                  | K = 0.       | 9991                      |            |
|              | 1.           | R-squared   | 0.997        | 0.274        | std error y-est |        |       |        | ບັ 25 -     |      |           |                      |                         |                  |              |                           |            |
| ÷            |              | F-stat      | 1574.115     | 4.000        | deg F           |        |       | -      | 1           |      |           |                      |                         |                  |              | -                         |            |
|              |              | reg sum sq  | 117.908      | 0.300        | ris sum sq      |        |       |        | -           |      |           |                      |                         |                  |              |                           |            |
|              |              | Efficiency  | 85.90%       | 0.000        | no sun sy       |        |       |        | 20          |      | ,         | y = -3.7136x         | +22.805                 |                  |              |                           |            |
|              |              | Emcleticy   | 03.00 //     |              |                 |        |       |        | 20          |      |           | =                    |                         |                  |              |                           |            |
| Gene of      |              |             |              |              |                 |        |       |        |             |      |           | R <sup>2</sup> = 0.9 | 9975                    |                  |              |                           |            |
| Interest     | RNA (ng/rxn) | log RNA     | 1            | 2            | 3               | AVG    | SD    | CV     | 45          |      |           |                      |                         |                  |              |                           |            |
| std curve    | 50           | 1.699       | 21.052       | 21.843       | 20.798          | 21.231 | 0.545 | 2.57%  | 15 -        |      |           |                      |                         |                  |              |                           |            |
| std curve    | 10           | 1.000       | 24.184       | 24.233       | 24.062          | 24.160 | 0.088 | 0.36%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 2            | 0.301       | 27.002       | 27.179       | 26.820          | 27.000 | 0.180 | 0.67%  | -           |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.4          | -0.398      | 29.888       | 29.983       | 29.859          | 29.910 | 0.064 | 0.22%  | 10 🕂 –      |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.08         | -1.097      | 32.720       | 32.810       | 33.044          | 32.858 | 0.168 | 0.51%  |             |      |           |                      |                         |                  |              |                           |            |
| std curve    | 0.016        | -1.796      | 35.617       | 36.395       | 36,138          | 36.050 | 0.396 | 1.10%  | -2          | -1.5 | -1        | -0.5                 | 0                       | 0.5              | 1            | 1.5                       | 2          |
| std curve    | -RT          | -           | Undetermined | Undetermined | Undetermined    | -      | -     |        |             |      |           |                      |                         |                  |              |                           |            |
| HT 29 parent | 5            | 0.699       | 29.769       | 29.553       | 29.124          | 29.482 | 0.328 | 1.11%  |             |      |           | lo                   | g <sub>10</sub> RNA (ng | g/rxn)           |              |                           |            |
| HT 29 parent | 0.5          | -0.301      | 36.648       | 36.134       | 34.556          | 35.779 | 1.090 | 3.05%  |             |      |           |                      |                         |                  |              |                           |            |
| HT 29 parent | -RT          |             | Undetermined | Undetermined | Undetermined    | -      | 1 12  | (2)    |             |      | E         | Otom double          |                         | anima and in Day |              |                           |            |
| HT 29 x8     | 5            | 0.699       | 25.079       | 25.198       | 24.418          | 24.899 | 0.420 | 1.69%  |             |      | Figure 2: | Standard C           | urves for F             | Primers in Rea   | al Time Assa | ау                        |            |
| HT 29 x8     | 0.5          | -0.301      | 28.781       | 29.234       | 28.293          | 28.770 | 0.471 | 1.64%  |             |      |           |                      |                         |                  |              |                           |            |
| HT 29 x8     | -RT          |             | Undetermined | Undetermined | Undetermined    | -      |       | -      |             |      |           |                      |                         |                  |              |                           |            |
| no temp      | 0            | _           | Undetermined | Undetermined | Undetermined    | -      | -     |        |             |      |           |                      |                         |                  |              |                           |            |
| notemp       | 0            | -           | Ondetermined | Ondetermined | Ondetermined    |        | 1 22  | 10.00  | -           |      |           |                      |                         |                  |              |                           |            |
|              |              | slope       | -4.214       | 28.331       | intercept       |        |       |        | -           |      |           |                      |                         |                  |              |                           |            |
|              |              | std error m | 0.039        | 0.046        | std error b     |        | -     |        |             |      |           |                      |                         |                  |              |                           |            |
|              |              |             | 1.000        | 0.046        |                 |        |       | -      |             |      |           |                      |                         |                  |              |                           |            |
|              |              | R-squared   | 11976.157    | 7.4.1112.7.0 | std error y-est |        |       | -      |             |      |           |                      |                         |                  |              |                           |            |
|              | 1            | F-stat      |              | 4.000        | deg F           |        | -     | -      |             |      |           |                      |                         |                  |              |                           |            |
|              |              | reg sum sq  | 151.849      | 0.051        | ris sum sq      |        |       | -      | -           |      |           |                      |                         |                  |              |                           |            |
|              | 15           | Efficiency  | 72.70%       |              | 3               |        |       |        |             |      |           |                      |                         |                  |              |                           |            |



**PCR Amplification Efficiency** 

# A standard curve slope of –3.32 indicates a PCR reaction with 100% efficiency.


# Slopes more negative than -3.32 (ex. -3.9) indicate reactions that are less than 100% efficient.

Slopes more positive than –3.32 (ex. –2.5) may indicate sample quality or pipetting problems.



### E = efficiency from standard curve

A calculation for estimating the efficiency (E) of a real-time PCR assay is:  $E = (10^{-1/slope} - 1) \times 100$ 



To ensure comparability: determine the PCR efficiency of each individual assay - PCR efficiency must be similar for GOI and Ref.Gene. An efficiency between 96% and 100%.



# **Importance of controls**

- Negative control (no cDNA)
  - checks reagents for contamination
- No reverse transcriptase control (involves carrying out the RT step in the absence of reverse transcriptase)
  - detects if signal from contaminating DNA
- Positive control
  - checks that reagents and primers work
  - especially importance if trying to show absence of expression of a gene



# Importance of controls

#### 

RNA from treated cells

Is there any change in your gene expression?



**Importance of controls** 

RNA from control cells

cDNA from control

No RT for control (to see if any genomic DNA signal)

RNA from treated cells

No RT for treated cells (to see if any genomic DNA signal)

## Is there any change in your gene expression?

\*RT - Reverse Transcriptase



# Importance of Normalization Standards - corrects for loading errors

#### Definition?

- same copy number in all cells
- expressed in all cells
- medium copy number advantageous

Suzuki et al., 2000: In 1999 over 90% of the RNA transcription analyses published in high impact journals, used only one reference gene. Prominent genes were: GAPDH, Beta-actin, 18S and 28S rRNAs.

Several publications agree with the finding: 'GAPDH, Betaactin vary considerably and are consequently unsuitable references for RNA transcription analysis'

Unreasonable STATEMENT: the transcription of any gene in a living cell is absolutely resistant to cell cycle fluctuations or nutrient status, etc.



# **Normalization Standards - corrects for loading errors**

- Commonly used standards
  - Glyceraldehyde-3-phosphate dehydrogenase mRNA (GAPDH)
  - Beta-actin mRNA
  - MHC I (major histocompatability complex I) mRNA
  - mRNAs for certain ribosomal proteins

•E.g. RPLP0 (ribosomal protein, large, P0; also known as 36B4, P0, L10E, RPPO, PRLP0, 60S acidic ribosomal protein P0, ribosomal protein L10, Arbp or acidic ribosomal phosphoprotein P0)

- 28S or 18S rRNA



## **Importance of Normalization Standards**

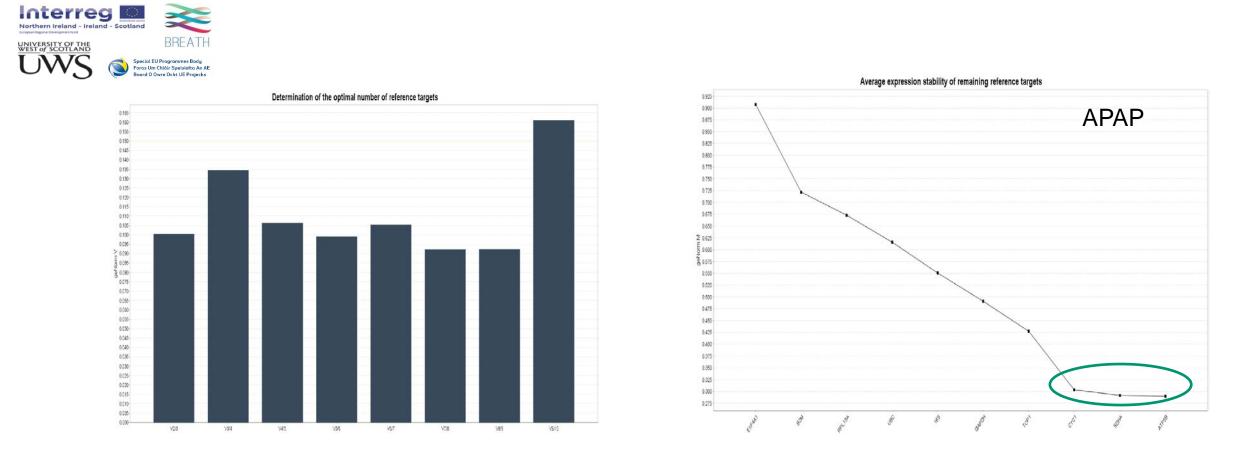
- The perfect standard does not exist
- You have to determine which is best for your experiment / organism / tissue / cells



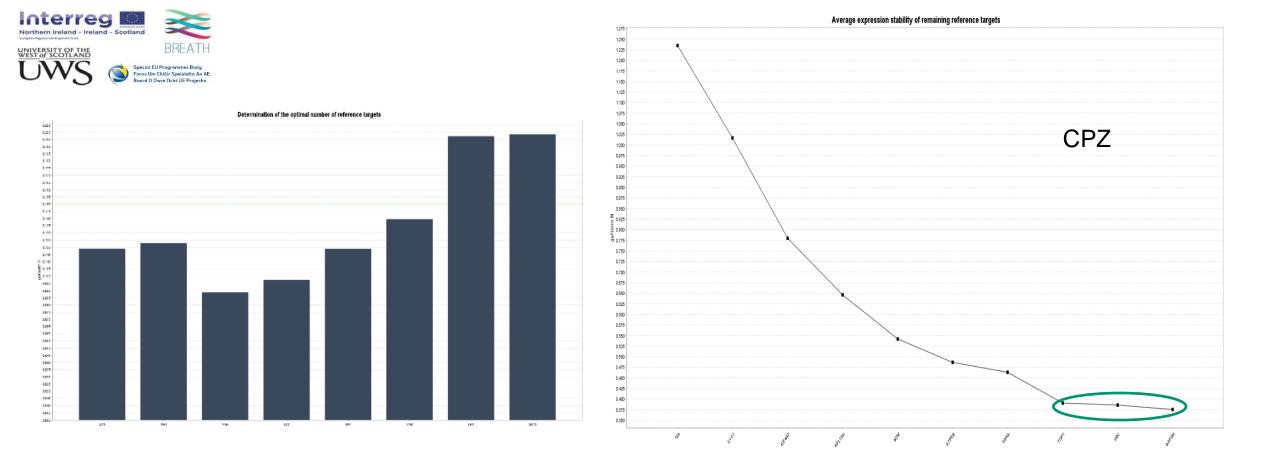
# **Importance of Normalization Standards**

- There are no true "House keeping" genes
- Uses more than 1 reference gene (3 is recommended) and takes the geometric mean to normalize fold expression
- Using a single reference gene leads to incorrect normalization up to 3.0-fold and 6.4-fold in 25% and 10% of the cases, respectively, with sporadic values above 20-fold
- geNorm site: <u>http://medgen.ugen.be/~jvdesomp/genorm/</u>
  - geNorm is a popular algorithm to determine the most stable reference (housekeeping) genes from a set of tested candidate reference genes in a given sample panel




# **Normalization Standards - corrects for loading errors**

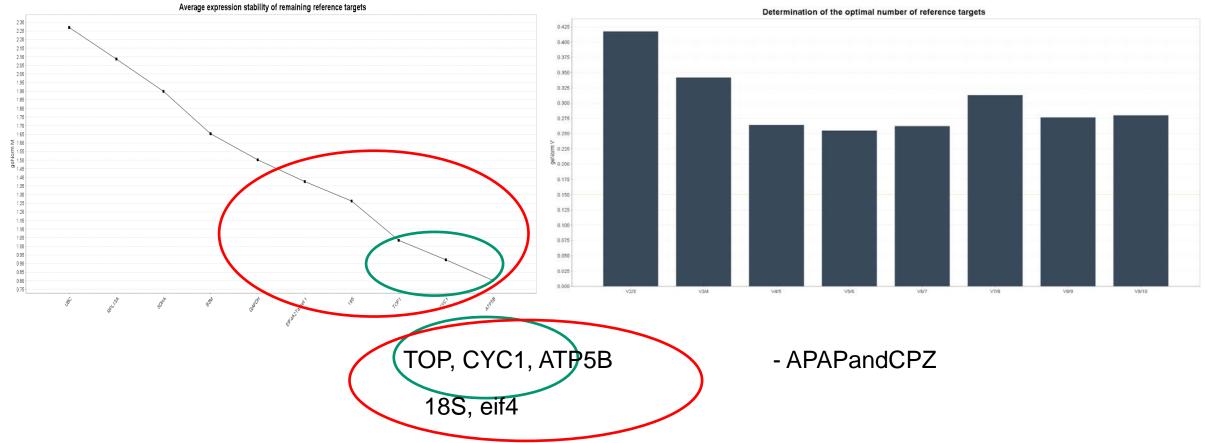
Normalisation of differences in the amount of cDNA in individual samples generated by:


(i) different amounts of starting material,(ii) the quality of the starting material,(iii) differences in RNA preparation and cDNA synthesis

same copy number in all cells

expressed in all cells




APAP: Optimal reference target selection: The optimal number of reference targets in this experimental situation is 2 (geNorm V < 0.15 when comparing a normalization factor based on the 2 or 3 most stable targets). As such, the optimal normalization factor can be calculated as the geometric mean of reference targets CYC1, SDHA and ATP5B.



CPZ: Optimal reference target selection: The optimal number of reference targets in this experimental situation is 2 (geNorm V < 0.15 when comparing a normalization factor based on the 2 or 3 most stable targets). As such, the optimal normalization factor can be calculated as the geometric mean of reference targets TOP1, UBC and GAPDH.

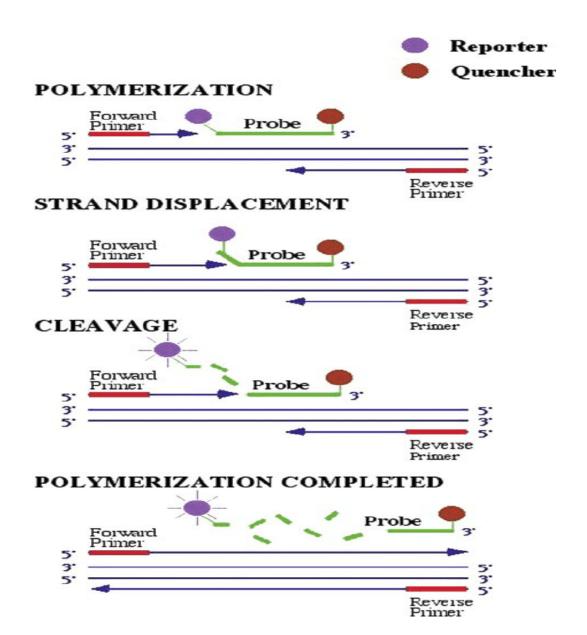


#### Comparative analyses : APAP vs CPZ – as additional option



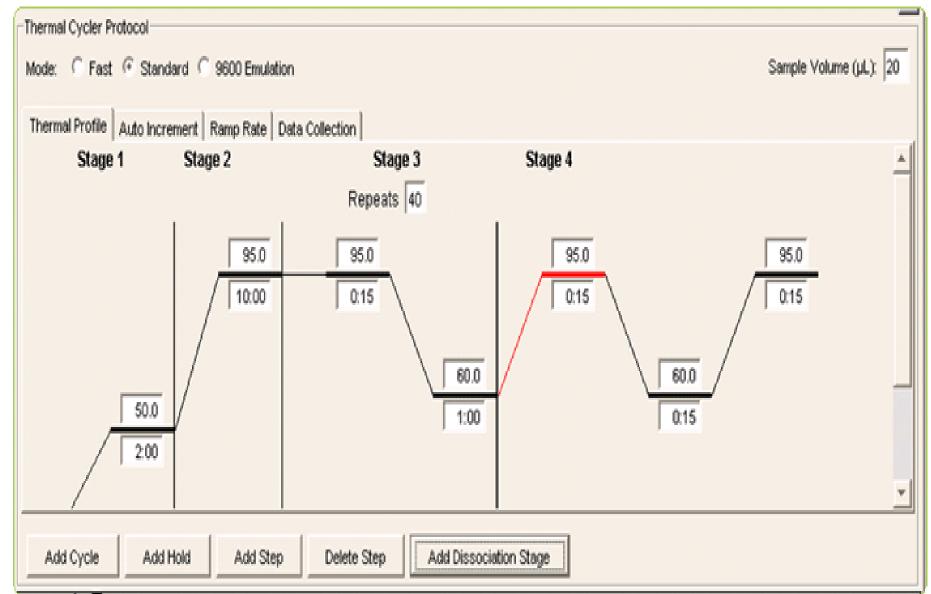

APAP and CPZ: Optimal number of reference targets: The optimal number of reference targets in this experimental situation is 5. Genorm recommends to use 5 reference targets with lowest M value, as the use of multiple (non-optimal in this case) reference targets results in more accurate normalization compared to the use of a single non-validated reference target.










#### TaqMan

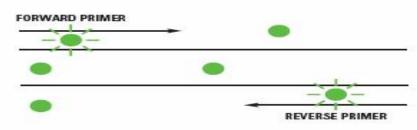




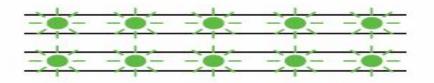
#### SybreGreen

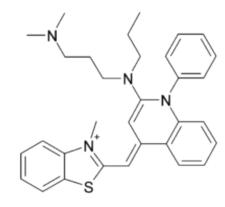




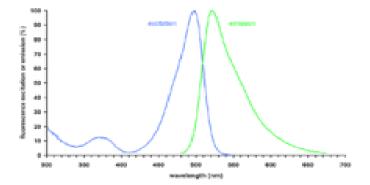


 Reaction setup: The SYBR<sup>®</sup> Green I Dye fluoresces when bound to double-stranded DNA.




 Denaturation: When the DNA is denatured, the SYBR<sup>®</sup> Green I Dye is released and the fluorescence is drastically reduced.




 Polymerization: During extension, primers anneal and PCR product is generated.




4. Polymerization completed: When polymerization is complete, SYBR<sup>®</sup> Green I Dye binds to the double-stranded product, resulting in a net increase in fluorescence detected by the 7900HT system.





- SYBR Green is a cyanine dye that binds to double stranded DNA.
- When it is bound to D.S. DNA it has greater fluorescence than when bound to single stranded DNA.
- This can be used to follow the production of new PCR products

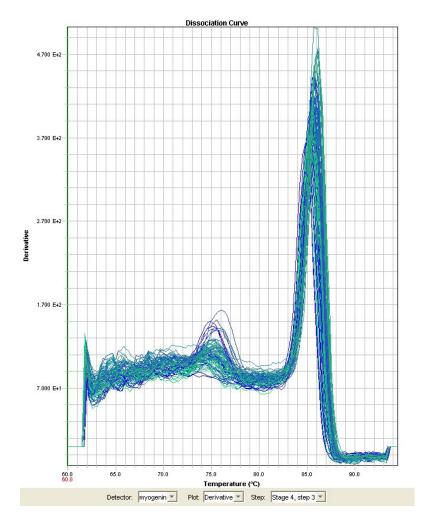




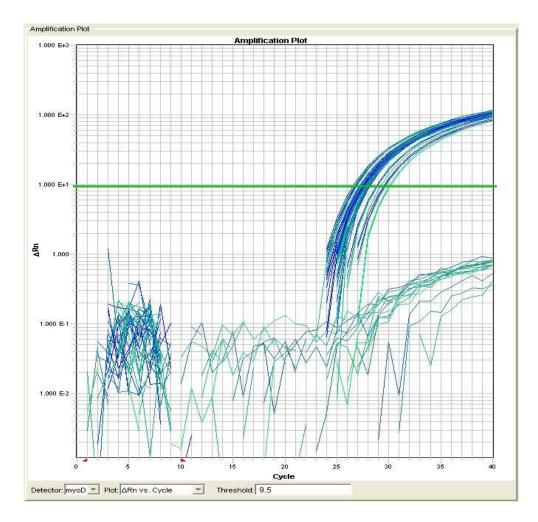
# **Reaction Optimization**

- Melt Curve MIQE Guidelines
- Data Analysis



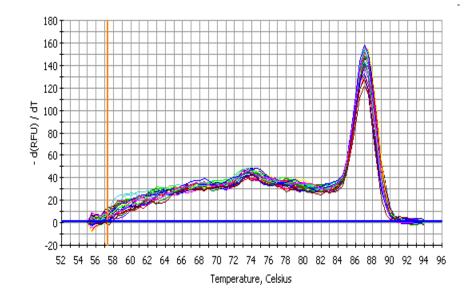

**Dissociation Curve** 

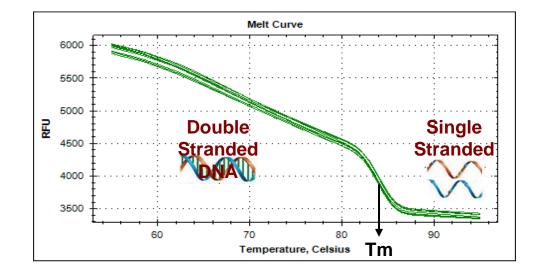
#### Why Using Dissociation Curves?


# Nonspecific amplification, including primer-dimers, may affect the quality of amplification data.

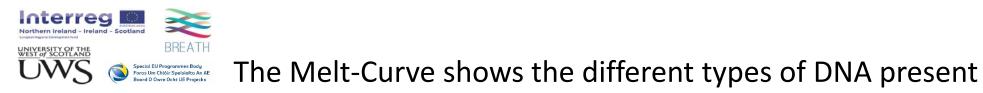


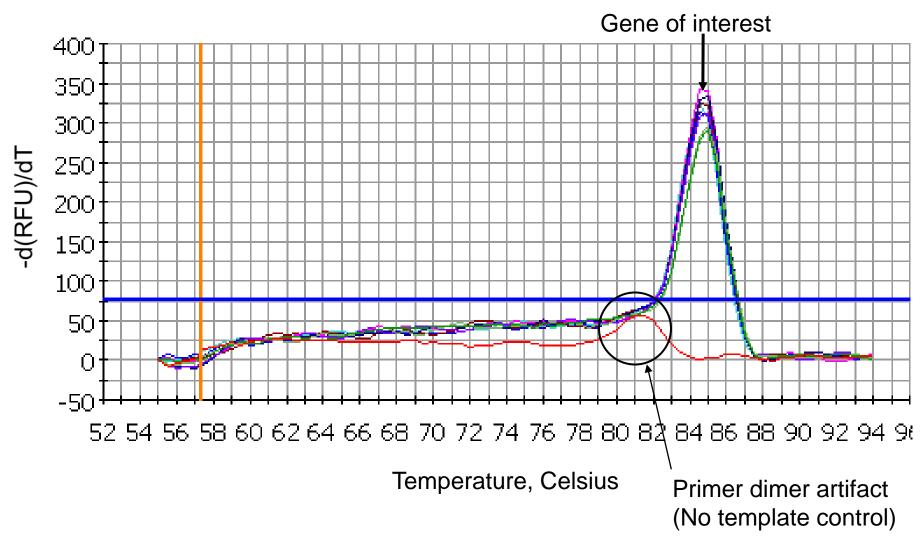
### **Dissociation Curve**





### **Amplification Curve**



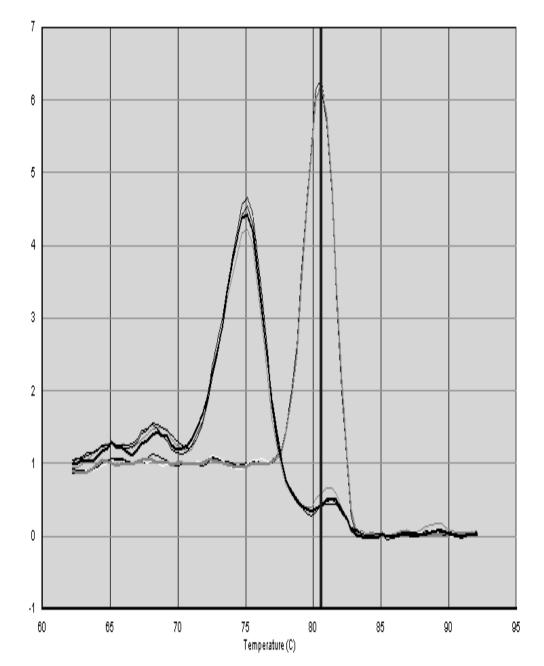




# Endpoint analysis to determine the melting temperature (Tm) of PCR products.





- Melting temperature (Tm) of dsDNA
  - Temperature at which half the DNA is double stranded and half is single stranded
  - Depends on nucleotide content and length

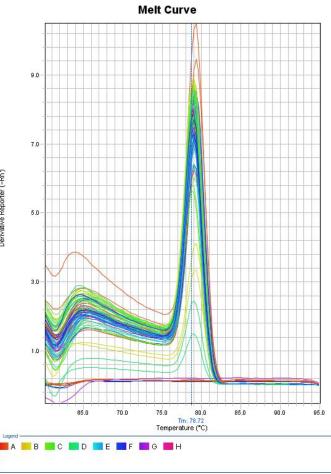


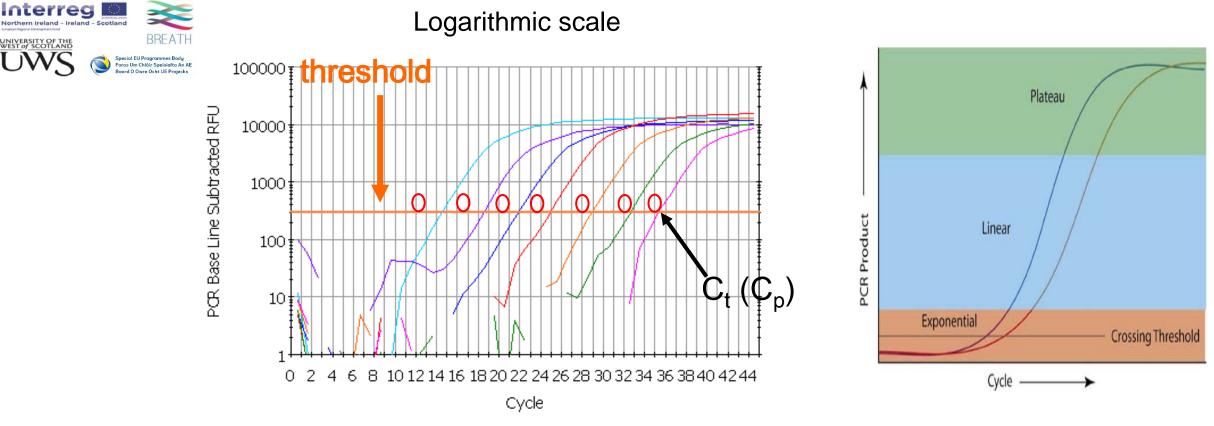





# **Melt Curve Analysis**

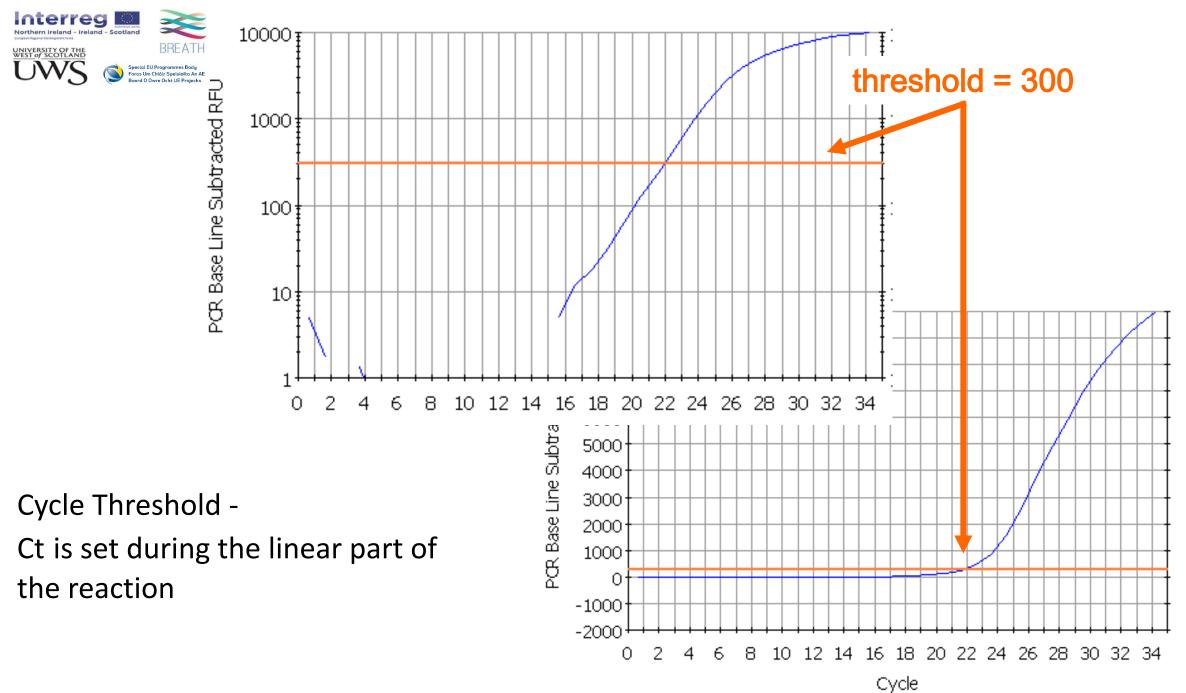
- Dissociation curves show typical primer-dimer formation.
- The specific product is shown with a melting temperature (Tm ) of 80.5  $^\circ\,$  C
- The primer-dimer has a characteristically lower Tm of 75 ° C.
- Primer-dimer will be most prevalent in No Template Control (NTC) wells or in sample wells containing low concentrations of template.





Author: Dr Joanna Brzeszczyńska (UWS)

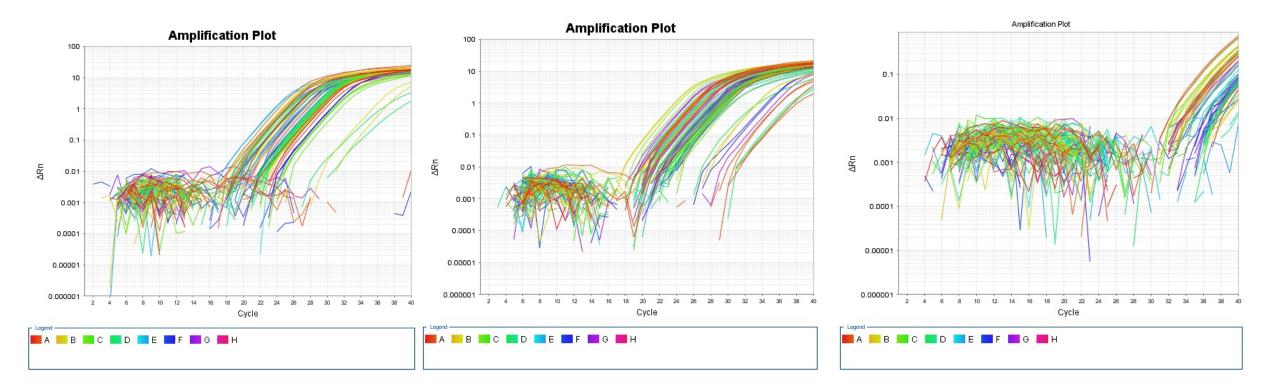


## **Melt Curve Analysis**


Melt Curve Melt Curve 0.6 0.5 8.0 9.0 0.4 6.0 7.0 0.3 (-Rn) ter (-Rn) (-Rn) re Reporter Report ative Rep 0.2 4.0 5.0 Der e, Deriv 0.1 2.0 3.0 0.0 -0.1 1.0 0.0 -0.2 70.0 75.0 95.0 65.0 80.0 85.0 90.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 Tm: 74.79 65.0 Tm: 82.75 Temperature (°C) Temperature (°C) 📕 A 📕 B 📕 C 📕 D 📕 E 📕 G H 📕 A 📕 B 📕 C 📕 D 📕 E G F 0

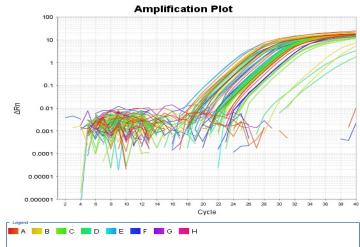


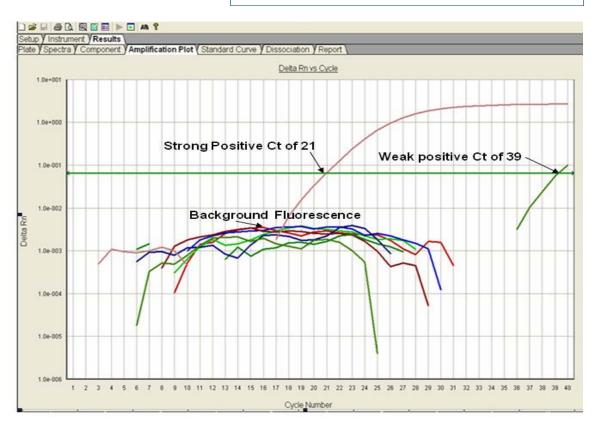



Cycle Threshold - Ct is set during the linear part of the reaction

The Ct (cycle threshold) is defined as the number of cycles required for the fluorescent signal to cross the threshold (ie exceeds background level).




Author: Dr Joanna Brzeszczyńska (UWS)






In a real time PCR assay a positive reaction is detected by accumulation of a fluorescent signal







Ct levels are inversely proportional to the amount of target nucleic acid in the sample.

(ie. the lower the Ct level the greater the amount of target nucleic acid in the sample).

RT-QPCR assays undergo 40 cycles of amplification

Cts < 29 are strong positive reactions indicative of abundant target nucleic acid in the sample

Cts of 30-37 are positive reactions indicative of moderate amounts of target nucleic acid

Cts of 38-40 are weak reactions indicative of minimal amounts of target nucleic acid which could represent an environmental contamination



| Microsoft                 | Microsoft Excel - hu_multi-assay01_08-06-05_TM1-automatic.xls |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
|---------------------------|---------------------------------------------------------------|-------------------------------|------------|--------------------|------------------------|----------|----------|--------------|---------|-------------|------------------------|----------------|---------------|------------------------|-----------------------|-------|--|
| : Datei Be                |                                                               |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
| 10 📦 🖬 0                  | 3 () (3 () (1) (1) (1) (1) (1) (1) (1) (1) (1)                | 2. 10                         | - 🖓 😣 :    | Σ - 21   📖         | Arial                  |          | - 10 - 1 | F K U 🔳      |         | ) 🥶 % 000 × | C 🎲 🔅 🕸                | 1 🖽 • 💩 •      | A - 🖉 Aus     |                        |                       |       |  |
| R52                       | <b>-</b> <i>f</i> <sub>2</sub>                                |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
| A                         | B                                                             | C                             | D          | E                  | F                      | G        | н        | 1            | J       | K           | L                      | M              | N             | 0                      | control               | MyoD1 |  |
| 1 SDS 2.2.2<br>2 Filename | AQ Results<br>hu multi-assay01 08-                            | 1                             |            |                    |                        |          |          |              |         |             |                        |                |               |                        | control               | MyoD1 |  |
| 2 Filename<br>3 PlateID   | hu_multi-assayU1_08-                                          | 06-05                         |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
|                           | pe Absolute Quantificatio                                     | n                             |            |                    |                        |          |          |              |         |             |                        |                |               |                        | control               | MyoD1 |  |
| 5 Run Date                | Tim 06.08.2005 17:14                                          | 1                             |            |                    |                        |          |          |              |         | _           |                        |                |               |                        | TNF10ng/ml            | MyoD1 |  |
| 6 Operator                | ycleParams                                                    |                               |            |                    |                        |          |          |              |         | _           |                        |                |               |                        | TNF10ng/ml            | MyoD1 |  |
| 8                         | rcier arams                                                   |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        | -                     |       |  |
| 9 Sample In               | formation                                                     |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        | TNF10ng/ml            | MyoD1 |  |
| 10<br>11 Well             | Counts Name                                                   | Dute stor No.                 | Decentry   | Test               | ~                      | 0        | Ob Marca | Ob Obl       | Chlore  | OL OLID     | Deserver Terr          | Received Other | Decelies Oto  | Thursday               | TNF20ng/ml            | MyoD1 |  |
| 12 vveli                  | Sample Name<br>19 P24                                         | Detector Nam<br>FLT1          | FAM        | Task<br>Unknown    | Ct<br>35,691845        | Quantity | Qty Mean | Qty StdDev   | Ut Mean | Ct StdDev   | Automatic              | Baseline Star  | Daseline Sto  | Automatic              | TNF20ng/ml            | MyoD1 |  |
| 13                        | 20 P24                                                        |                               | FAM        | Unknown            | 35,38785               |          |          |              |         |             | Automatic              |                |               | Automatic              | Ū.                    |       |  |
| 14                        | 21 P24                                                        |                               | FAM        | Unknown            | 35,804123              |          |          |              |         |             | Automatic              |                |               | Automatic              | TNF20ng/ml            | MyoD1 |  |
|                           | 22 P25<br>23 P25                                              |                               | FAM<br>FAM | Unknown<br>Unknown | 35,13986               |          |          |              |         |             | Automatic              |                |               | Automatic              | IFN10ng/ml            | MyoD1 |  |
|                           | 24 P25                                                        |                               | FAM        | Unknown            | 35,13733               |          |          |              |         |             | Automatic<br>Automatic |                |               | Automatic              | IFN10ng/ml            | MyoD1 |  |
|                           | 25 P26                                                        |                               | FAM        | Unknown            | 35,977436              |          |          |              |         |             | Automatic              |                |               | Automatic              | Ū.                    |       |  |
| 19                        | 26 P26                                                        |                               | FAM        | Unknown            | 35,557457              |          |          |              |         |             | Automatic              |                |               | Automatic              | IFN10ng/ml            | MyoD1 |  |
| 20                        | 27 P26<br>28 P27                                              |                               | FAM<br>FAM | Unknown<br>Unknown | 36,015816<br>32,737324 |          |          |              |         |             | Automatic<br>Automatic |                |               | Automatic<br>Automatic | IFN20ng/ml            | MyoD1 |  |
|                           | 29 P27                                                        |                               | FAM        | Unknown            | 32,803486              |          |          |              |         |             | Automatic              |                |               | Automatic              | IFN20ng/ml            | MyoD1 |  |
| 23                        | 30 P27                                                        | FLT1                          | FAM        | Unknown            | 32,768223              |          |          |              |         |             | Automatic              |                |               | Automatic              | -                     |       |  |
| 24                        | 31 P28                                                        |                               | FAM        | Unknown            | 31,72878               |          |          |              |         |             | Automatic              |                |               | Automatic              | IFN20ng/ml            | MyoD1 |  |
| 25                        | 32 P28<br>33 P28                                              |                               | FAM        | Unknown<br>Unknown | 31,62819               |          |          |              |         | _           | Automatic              |                |               | Automatic<br>Automatic | TNF10ng/ml+IFN10ng/ml | MyoD1 |  |
| 27                        | 34 P29                                                        |                               | FAM        | Unknown            | 30,517857              |          |          |              |         |             | Automatic              |                |               | Automatic              |                       |       |  |
| 28                        | 35 P29                                                        | FLT1                          | FAM        | Unknown            | 30,448866              |          |          |              |         |             | Automatic              |                |               | Automatic              | TNF10ng/ml+IFN10ng/ml | MyoD1 |  |
| 29                        | 36 P29                                                        |                               | FAM        | Unknown            | 30,550682              |          |          |              |         |             | Automatic              |                |               | Automatic              | TNF10ng/ml+IFN10ng/ml | MyoD1 |  |
| 30 Slope<br>31 Y-Intercep |                                                               | cycles/log de                 | cade       |                    |                        |          |          |              |         |             |                        |                |               |                        | TNF10ng/ml+IFN20ng/ml | MyoD1 |  |
| 32 R*2                    |                                                               |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        | <b>J</b>              |       |  |
| 33                        |                                                               |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        | TNF10ng/ml+IFN20ng/ml | MyoD1 |  |
| 34<br>35 Well             | Comple Name                                                   | Datasta Nas                   | Decenter   | Teels              | ~                      | Ouestau  | Ohublase | Obs StalDays | ChMass  | Ct StdDay   | Dessing Tur            | Baseline Star  | Perceline Oto | Threaded               | TNF10ng/ml+IFN20ng/ml | MyoD1 |  |
| 36 Slope                  | Sample Name                                                   | Detector Nam<br>cycles/log de |            | Task               | Ct                     | Quantity | Qty Mean | Qty StdDev   | Ct Mean | Ct StdDev   | Daseline Typ           | Daseline Stat  | Daseline Sto  | Inreshold              | Ū Ū                   |       |  |
| 37 Y-Intercep             | t                                                             | ejenearrog ae                 |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
| 38 R*2                    |                                                               |                               |            |                    |                        |          |          |              |         |             |                        |                |               |                        |                       |       |  |
| 39<br>40                  |                                                               |                               |            |                    |                        |          |          |              |         | _           |                        |                |               | _                      |                       |       |  |
| 40<br>41 Well             | Sample Name                                                   | Detector Nam                  | Reporter   | Task               | Ct                     | Quantity | Qty Mean | Qty StdDev   | Ct Mean | Ct StdDev   | Baseline Typ           | Baseline Star  | Baseline Stor | Threshold              |                       |       |  |
| 42                        | 73 P24                                                        | hu_CD14                       | FAM        | Unknown            | 25,387089              |          |          |              |         |             | Automatic              |                |               | Automatic              |                       |       |  |
|                           | 74 P24                                                        |                               | FAM        | Unknown            | 25,37387               |          |          |              |         |             | Automatic              |                |               | Automatic              |                       |       |  |
|                           | 75 P24<br>1_multi-assay01_08-06-0                             |                               | EAM        | Unkneen            | 25,24582               |          |          | <            |         |             | Automatic              |                |               | Automatic ~            |                       |       |  |
| Bereit                    |                                                               |                               |            |                    |                        |          |          |              |         |             |                        |                | NF            |                        |                       |       |  |

26.0 26.6 26.5 28.8 28.4 28.4 28.1 28.1 28.1 28.8 31.0 31.0 28.9 28.5 28.5 28.5 28.4 28.1 29.3 28.0 27.7



# **qPCR** Data Analysis

Comparative quantification determines relative abundance rather than exact copy.

Considerations:

- Gene Expression Assays have amplification efficiencies of 100%, and because of this, when using Gene
  Expression Assays, calculated fold change values correlate better to expected fold change values when the
  comparative CT method is used.
- If you are using custom primers and probes, an initial validation relative standard curve is recommended to validate the PCR efficiencies of the target and endogenous control(s), particularly when you are looking for low-expression-level fold changes.
- The comparative CT method is useful when a high number of targets and/or number of samples are tested.



# **qPCR** Data Analysis

Absolute quantification allows actual copy numbers to be determined but is labor intensive.

Considerations:

- This method requires that each reaction plate contain standard curves, and requires more reagents and more space on a reaction plate.
- This approach gives highly accurate quantitative results because unknown sample quantitative values are interpolated from the standard curve(s).
- Consider this method when testing low numbers of targets and small numbers of samples and if you are looking for very discrete expression changes.



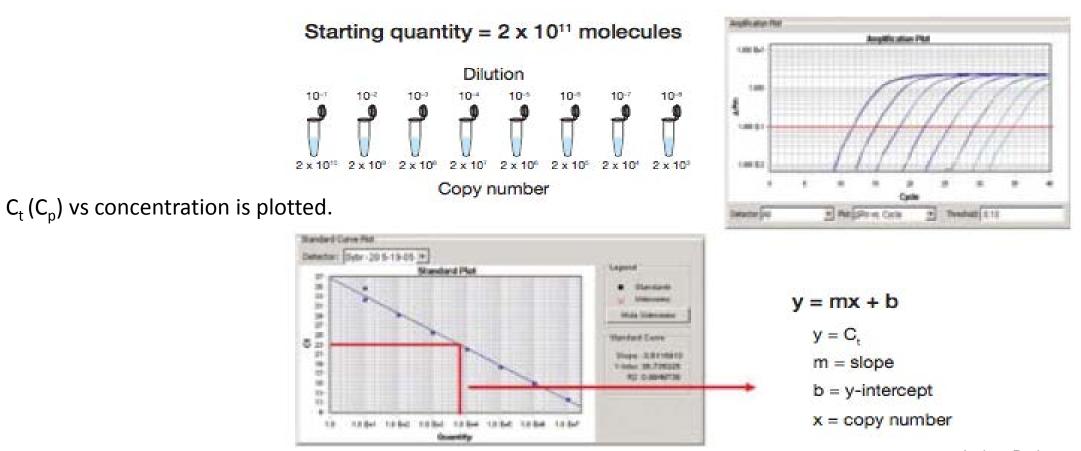
# Comparative quantification – $\Delta C_t$ method

This basic method does not incorporate a normalizer or corrects for efficiency. It assumes that the same amount of template was present and the amplification efficiency is the same

Most basic form is to obtain a C<sub>t</sub> value for the gene of interest and a calibrator sample (such as time zero sample). The difference is the  $\Delta C_t$ 

Fold difference =  $2^{\Delta C}t$ 

**ΔΔ Ct-Method:** 


 $\Delta CT = CT_{rarget} - CT_{ref}$  $\Delta \Delta Ct = \Delta CT_{treated} - \Delta CT_{control}$ Ratio = 2<sup>-\Delta \Delta CT</sup>

target =target generef =reference / housekeeping genetreated =treated tissue or timepointcontrol =reference tissue or timepoint

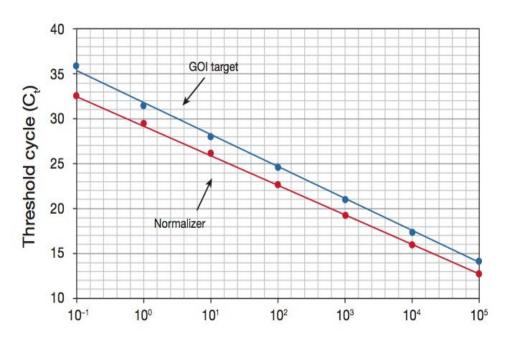


# Absolute quantification

A standard curve is generated using a single template species that is diluted over several orders of magnitude.






#### Absolute quantification – standard curve method

E = efficiency from standard curve  $E = 10^{[-1/slope]}$ 

Fold difference =  $(E_{target})^{\Delta Ct \ target} / (E_{normalizer})^{\Delta Ct \ normalizer}$ 

 $\Delta Ct target = C_{t GOI} c - C_{t GOI} s$  $\Delta Ct normalizer = C_{t norm} c - C_{t norm} s$ 

Fold difference equation derived from M.W. Pfaffl in A-Z of Quantitative PCR



Starting quantity (pg total RNA)



References: Several pdfs for this talk are available at: <a href="http://botany.okstate.edu/resources/pcr">http://botany.okstate.edu/resources/pcr</a>

Another good website with loads of information: http://www.gene-quantification.de/

Any Questions?